
Nonclinical Profile of GS-4182, a Once-Weekly Oral Prodrug of the HIV-1 Capsid Inhibitor Lenacapavir in Clinical Development

Raju Subramanian,¹ Julie Farand,² Bing Lu,¹ Jonathan Wang,¹ James Mack,² Tez Guney,² Sahar Rahmani,³ Joshua Savage,³ Jennifer Leung,¹ Nathan Kozon,¹ Nevena Mollova,¹ Wei Wang,¹ Bali Singh,⁴ Shelly Moores,⁴ Tracy Lagunero,⁴ Megan Wilichinsky,⁴ Gary Lee,⁵ Rolando Mejorado,⁵ Joseph Campbell,⁵ Yili Xu,⁵ Wei Kan,⁵ Anne Chester,⁴ William Watkins,² Tomas Cihlar,⁶ Bhanu Singh,⁴ Stephen R. Yant,⁶ Doris Zane,⁴ and Darryl Kato²

¹Gilead Sciences, Drug Metabolism and Pharmacokinetics, Foster City, United States, ²Gilead Sciences, Medicinal Chemistry, Foster City, United States, ³Gilead Sciences, Formulation and Process Development, Foster City, United States, ⁴Gilead Sciences, Nonclinical Safety and Pathobiology, Foster City, United States, ⁵Gilead Sciences, Research Discovery Sciences & Tech, Foster City, United States, ⁶Gilead Sciences, Research Discovery Virology, Foster City, United States

Conclusions

- GS-4182 is a novel solubilizing oral prodrug designed to liberate LEN in the gastrointestinal tract
- As designed, GS-4182 exhibits greater intestinal LEN absorption and improved systemic LEN exposure compared with oral administration of LEN in all nonclinical species tested
- GS-4182 reduced tablet size may lower pill burden when dosed as a single agent or fixed-dose combination with a partner agent
- GS-4182 exhibits a favorable nonclinical profile that supports its continued clinical development as a component of an optimized once-weekly oral regimen for the treatment of HIV-1 infection

Poster # WEPEA031

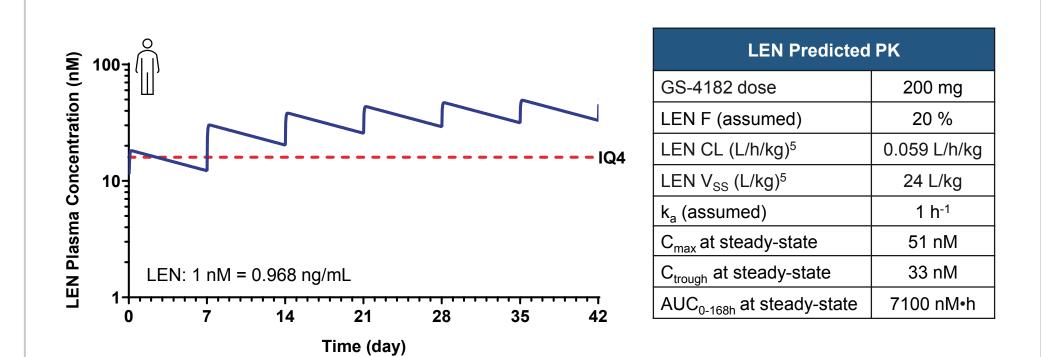
GS-4182 clinical data is presented in Poster WEPEB117:

Shaik et al. Safety and Pharmacokinetic Profile of Single and Multiple Ascending Doses of GS-4182, an Oral Prodrug of Lenacapavir, in Participants without HIV-1.

Introduction

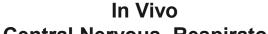
Results

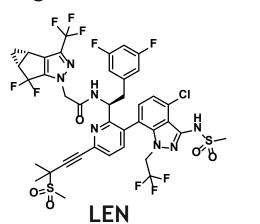
- Current oral antiretroviral regimens for HIV-1 treatment require daily dosing, and high adherence is necessary to minimize the risk of emergent drug resistance.¹ Thus, there is a need for novel long-acting (LA) regimens to reduce the risk of non-adherence and treatment failure²
- Lenacapavir (LEN) properties optimal for LA injectable agent
 - Highly potent antiviral activity; $EC_{50} = 105 \text{ pM} (paEC_{95} = 4 \text{ nM})^3$
 - Low human clearance of 0.06 L/h/kg⁴
 - Human *in vivo* $T_{1/2} \sim 12 \text{ days}^4$
 - Low aqueous solubility at pH 2 and 7, <1 μ g/mL⁵
- LEN as a LA injectable formulation administered twice-yearly is approved for people with multidrug-resistant HIV-1 infection (Sunlenca[®]) and is being studied for use both in treatment-naive people with HIV (PWH) in combination with other antiretroviral agents and as a single subcutaneous injectable pre-exposure prophylaxis agent for HIV prevention
- LEN undergoes rapid absorption following oral administration, with a time to maximum concentration of 4 hours following 300 mg administration. However, the absolute oral bioavailability of LEN is low, at 6–10% ^{6,7}
- While LEN tablets support oral lead-in and bridging therapy in the clinic, LEN's solubility profile indicates some limitations in its oral absorption and tablet drug load that may present challenges for long-acting oral administration


Figure 3. Crystalline GS-4182 Shows Improved Solubility Compared to LEN

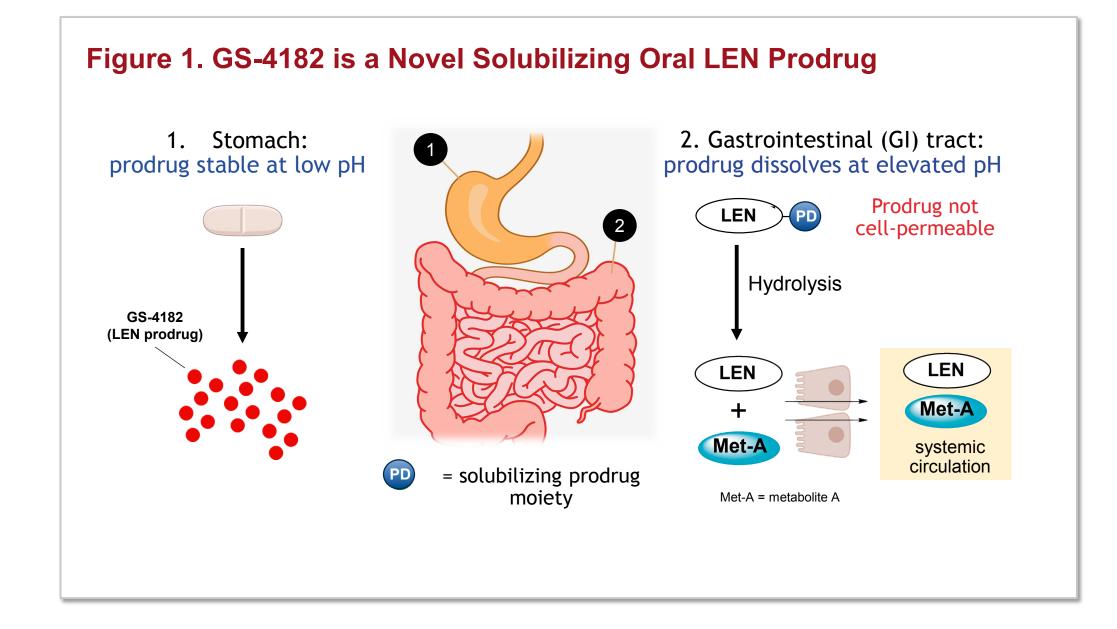
GS-4182 Property	Condition	Values
Permeability (AB/BA, 10 ⁻⁶ cm/s)	Caco-2 Cell Monolayer	<0.09/<0.09
GI S9 Stability (t _{1/2} , min)	Rat/Dog/Monkey/Human	122/99.4/19.7/96.1

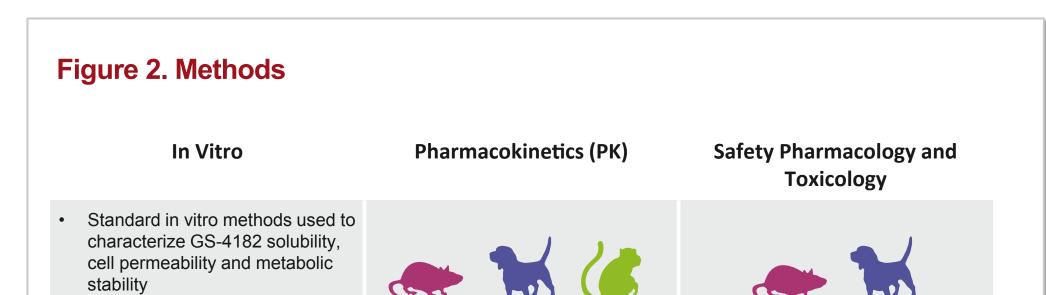
Figure 5. Predicted Human LEN PK with Oral GS-4182 QW Regimen



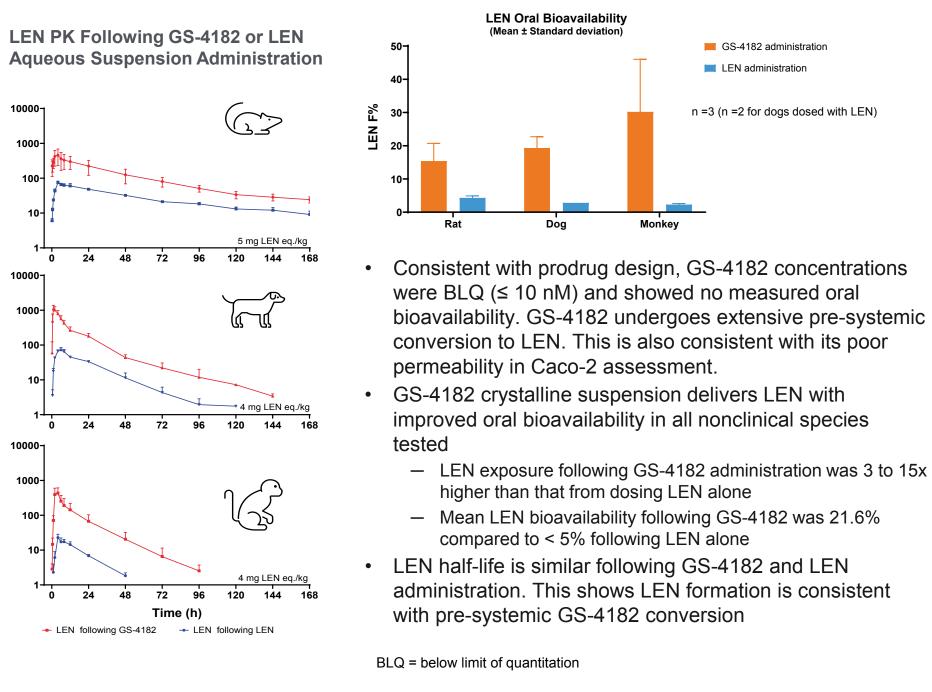

AUC = area under the PK curve; CL = clearance; C_{max} = maximum concentration; C_{trough} = concentration at the end of dose interval; E = oral bioavailability; k = oral absorption rate constant; PK = pharmacokinetic(s); V_{roo} = volume of distribution at s

interval; F = oral bioavailability; k_a = oral absorption rate constant; PK = pharmacokinetic(s); V_{SS} = volume of distribution at steady state; IQ4 = 4 × plasma protein binding adjusted effective concentration for 95% inhibition in MT-4 cell Line


Nonclinical Safety Pharmacology Summary



 Herein, we describe the nonclinical profile of GS-4182, a novel solubilizing oral prodrug of LEN designed to reduce tablet size and pill burden when combined with a partner agent in a once-weekly (QW) oral treatment regimen



Methods

- Caco-2: human colon carcinoma cell line; GI S9: gastrointestinal S9 fraction
- GS-4182 shows poor permeability across Caco-2 monolayers

Figure 4. GS-4182 Shows Improved LEN Oral Bioavailability in Nonclinical PK

Table 2. Administration of GS-4182 and LEN Tablets in Dogs UpholdsSuperior Oral Bioavailability with GS-4182

ΑΡΙ	Formulation	API Form	Dose (mg-fixed)	LEN F % ^a
GS-4182	Non-Precipitating Solution	NA	55	17.2 ± 3.5
	Tablet	crystalline	100	14.5 ± 5.9
LEN	SDD Tablet	amorphous	40	4.6 ± 1

Receptor Binding Potencies	Cardiovascular System	Central Nervous, Respiratory and Cardiovascular Systems
GS-4182 showed low potential for off-target effects against a panel of 87 molecular targets. Weak inhibition of radioligand binding were seen to 4 targets (IC ₅₀ range $1.1 - 4.1 \mu$ M) which are unlikely to be clinically relevant	GS-4182 (3-10 µM) showed no statistically significant inhibition of the hERG channel when compared to vehicle control values	No GS-4182-related effects observed on the CNS or respiratory system in rats at oral doses up to 1000 mg/kg or the cardiovascular system in dogs at oral doses up to 100 mg/kg, the highest doses tested in these studies

Nonclinical Toxicology Summary Image: Specific Speci

- Met-A, a prodrug metabolite (Figure 1) is observed in systemic circulation following GS-4182 oral administration in nonclinical species and appears unlikely to have significant biological effects based on the following data:
- Human predicted plasma half-life ($t_{1/2} \sim 6 h$) is ~46-fold shorter than LEN $t_{1/2}$ (~12 d)
- Projected human exposure is small relative to LEN and is not expected to accumulate
- Met-A shows no antiviral activity in vitro: $MT-4/HIV-1_{IIIb} EC_{50} > 50 \mu M$

 Antiviral activity of GS-4182 and Met-A were evaluated in MT-4 cells acutely infected with the HIV-1 IIIb strain Cytotoxicity assessed in human cell lines and primary cells of different cell origin GS-4182 and Met-A evaluated across a panel of standard safety pharmacology studies 	GS-4182, LEN, Met-A Single Oral and/or IV infusion Plasma PK parameters determined by noncompartmental analysis (NCA)	GS-4182, Met-A (rat only) Oral QW; 5 total doses Safety Pharmacology and Toxicology endpoints; plasma toxicokinetics (TK) by NCA
	species/strain: Wistar Han [®] rat (Envigo, Indiana	polis, IN), beagle dog, and cynomolgus monkey

a. Values are mean \pm standard deviation (n = 6)

 The 3-fold higher LEN oral bioavailability from GS-4182, allows for a reduced tablet size and lower pill burden if dosed as a single agent or fixed-dose combination with a partner agent

API = active pharmaceutical ingredient; NA = not applicable; SDD = spray dried dispersion

- Met-A shows low in vitro cytotoxicity across multiple cell types: CC_{50} > 44 µM
- Met-A shows no hits in the off-target panel (87 targets)
- Met-A is not genotoxic and showed no hERG inhibition
- In a repeat dose tox study in rats (once weekly oral dosing for 4 weeks), no Met-Arelated target organ toxicity or systemic adversity was identified
- The no-observed-effect level (NOEL) for Met-A was the highest dose tested (1,000 mg/kg/week) with an exposure margin of >24,000-fold compared to Met-A levels following a QW dose of 200 mg GS-4182

Acknowledgments: We thank all members of the GS-4182 research and development teams, and our CRO partners for conducting the nonclinical PK and safety/TK studies

References:

- 1. Nachega JB, et al. *Infectious Disorders Drug Targets*. 2011;11:167–74.
- 2. Enriquez M and McKinsey. DS. *HIV/AIDS Research and Palliative Care*. 2011;3:45–51.
- 3. Link et al. *Nature* 2020; 584: 614-618.
- 4. Subramanian et al. *Molecular Pharmaceutics* 2023; 20:6213-6225.
- 5. Weber et al. Clinical Pharmacokinetics 2024; 63:241-253.
- 6. Sunlenca® (lenacapavir) US Prescribing Information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/215973s000lbl.pdf (accessed May 2024).
- 7. Sunlenca® (lenacapavir) Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/sunlenca-epar-product-information_en.pdf (accessed May 2024).

Presented at AIDS 2024, the 25th International AIDS Conference, July 22-26, 2024, in Munich, Germany